Course Specifications

Programme(s) on which the course is given: Post-Graduate (Mineralogy & Petrology; Stratigraphy & Sedimentation; Geophysics)

Major or Minor element of programmes: Major. Department offering the programme: Geology Department offering the course: Geology Academic year / Level: /Post Graduate Date of specification approval:

a-Basic Information

Title: Remote Sensing Ap	plications	Code: G696
Credit Hours: 2 Credit Hour		Lecture: 2 Credit
Tutorial:	Practical:	Total: 2 Credit Hour

b-Professional Information

1 – Overall Aims of Course:

- To introduce the basic principles and methodology of remote sensing techniques.
- To give initial training in the applications of remote sensing in geological sciences

2 - Intended Learning Outcomes of Course (ILOs)

- **a- Knowledge and Understanding:** By the end of this course, the student should be able to:
 a1- Understand the most recent advances in remote sensing instruments.
 - **a2-** Familiarize with the remote sensing applications.
- b- Intellectual Skills: By the end of this course, the student should be able to:
 - b1- Apply advanced digital image processing,
 - **b2-** Analyze and interpret digital images
 - **b3-** Compare between different application using remote sensing techniques.
- c- Professional and Practical Skills: By the end of this course, the student should be able to:
 - $\ensuremath{\textbf{c1-}}\xspace$ Draw the raw data from the remote sensing measurements.
 - $\ensuremath{\text{c2-}}$ Perform the remote sensing field measurements.
- d- General and Transferable Skills: By the end of this course, the student should be able to: d1- Work as a part of team.
 - **d2-** Solve remote sensing problems.

3. Contents

Торіс		Lecture
Remote sensing techniques		4
Remote sensing and its applications on ore-deposits		2
Remote sensing and its applications on desertification		4
Remote sensing and its applications on geological hazards		8
(Flooding, salinity, sand dunes, earthquakes, dust storms, rock falls)		
Remote sensing and its applications on geomorphologic maps		2
Remote sensing and its applications on structure features		2
Remote sensing and its applications on lithologic mapping		2

Remote sensing and its applications on groundwater investigation	2	2
Volcanicity as an example of real time geology monitoring by		2
remote sensing		
Total	28	28

4 – Teaching and Learning Methods

4.1- lectures.

5- Student Assessment Methods

5.1- Regular written exam.	to assess a1, a2	
5.2- Mid-term exam.	to assess a2, c1	
5.3- At the end of term exam.	to assess a1-a2, b1-b2, c1-c2	
5.4- Reports and discussions	to assess d1-d2	
Assessment Schedule		
Assessment 1: short exam (class activities)	every two weeks	
ssessment 2:mid-term exam (written) week 7		
Assessment 3: final-term exam (written)	week 15-16	
Weighting of Assessments		
Written		
Mid-Term Exam:	20%	
Final-term Exam:	60%	
Semester Work (including reports, oral and discussion):	20%	
Total:	100%	

6- List of References

6.1- Course Notes:

6.2- Essential Books (Text Books): Jensen, J. R. 2004. Introductory Digital Image Processing. 3^{rd} ed.

6.3- Recommended Books:

6.4- Periodicals, Web Sites, ... etc

7- Facilities Required for Teaching and Learning

Data show and Lab. equipments, computers, recent remote sensing programmers.

Course Coordinator: Dr. Hani Ibrahim

Head of Department: Prof. Ahmed Al-Boghdady

Date: / /2012